Гидразин

Гидразин

Гидразин H2N—NH2 — неорганическое вещество, бесцветная, чрезвычайно токсичная, сильно гигроскопичная жидкость, с неприятным запахом.

Гидразин
Общие
Систематическое
наименование
Гидразин
Традиционные названия Гидразин, диамид
Хим. формула N2H4
Рац. формула N2H4
Физические свойства
Состояние бесцветная жидкость
Молярная масса 32,05 г/моль
Плотность 1,01 г/см³
Энергия ионизации 8,93 ± 0,01 эВ
Термические свойства
Температура
 • плавления +2 °C
 • кипения 114 °C
 • вспышки 99 ± 0 °F
Пределы взрываемости 2,9 ± 0,1 об.%
Давление пара 10 ± 1 мм рт.ст.
Химические свойства
Константа диссоциации кислоты

(для аммиака Kb = 1,78⋅10−5)

Протонирование второй неподеленной пары электронов протекает ещё труднее:

Известны соли гидразина — хлорид гидразиния N2H5Cl, сульфат гидразония N2H6SO4 и т. д. Иногда их формулы записывают N2H4 · HCl, N2H4 · H2SO4 и т. д. и называют гидрохлорид гидразина, сульфат гидразина и т. д. Большинство таких солей растворимо в воде.

Соли гидразина бесцветны, почти все хорошо растворимы в воде. К числу важнейших относится сульфат гидразина N2H4 · H2SO4.

Гидразин как восстановитель

Гидразин — энергичный восстановитель. В растворах гидразин обычно также окисляется до азота:

, , водородом в момент выделения ():
.

Окисляется кислородом воздуха до азота, аммиака и воды. Известны многие органические производные гидразина. Гидразин, а также гидразин-гидрат, гидразин-сульфат, гидразин-хлорид, широко применяются в качестве восстановителей золота, серебра, платиновых металлов из разбавленных растворов их солей. Медь в аналогичных условиях восстанавливается до закиси.

В органическом синтезе гидразин применяется для восстановления карбонильной группы альдегидов и кетонов до метиленовой по Кижнеру — Вольфу (реакция Кижнера — Вольфа), реакция идёт через образование гидразонов, расщепляющихся затем под действием сильных оснований.

Обнаружение

Качественной реакцией на гидразин служит образование окрашенных гидразонов с некоторыми альдегидами, в частности — с 4-диметиламинобензальдегидом.

Получение

Гидразин получают окислением аммиака или мочевины гипохлоритом натрия (метод Рашига):

,
,

реакция проводится при температуре 160 °C и давлении 2,5—3,0 МПа.

Синтез гидразина окислением мочевины гипохлоритом по механизму аналогичен синтезу аминов из амидов по Гофману:

,

реакция проводится при температуре ~100 °C и атмосферном давлении.

Применяется также метод Байера:

.

Применение

Гидразин применяют в органическом синтезе, в производстве пластмасс, резины, инсектицидов, взрывчатых веществ, в качестве компонента ракетного топлива, как восстановитель при выделении золота из растворов.

Гидразина сульфат применяется в случае таких заболеваний, как неоперабельные прогрессирующие распространённые формы, рецидивы и метастазы злокачественных опухолей — рак лёгкого (особенно немелкоклеточный), молочных желёз, желудка, поджелудочной железы, гортани, эндометрия, шейки матки, десмоидный рак, саркома мягких тканей, фибросаркома, нейробластома, лимфогранулематоз, лимфосаркома (монотерапия или в составе полихимиотерапии).

Гидразин также применяется в качестве топлива в гидразин-воздушных низкотемпературных топливных элементах.

Жидкая смесь гидразина и нитрата аммония используется как мощное взрывчатое средство с нулевым кислородным балансом — астролит, который, однако, в настоящее время практического значения не имеет.

Гидразин широко применяется в химической промышленности в качестве восстановителя кислорода, содержащегося в деминерализованной воде, применяемой для питания котлов (котельные установки, производства аммиака, слабой азотной кислоты и другое). При этом протекает следующая химическая реакция:

.

Ракетное топливо

Во время Второй мировой войны гидразин применялся в Германии в качестве одного из компонентов топлива для реактивных истребителей «Мессершмитт Ме-163» (C-Stoff, содержащий до 30 % гидрата гидразина).

Гидразин и его производные (метилгидразин, несимметричный диметилгидразин и их смеси (аэрозин)) широко распространены как ракетное горючее. Они могут быть использованы в паре с самыми разными окислителями, а некоторые и в качестве однокомпонентного топлива, в этом случае рабочим телом двигателя являются продукты разложения на катализаторе. Последнее удобно для маломощных двигателей.

Теоретические характеристики различных видов ракетного топлива, образованных гидразином с различными окислителями
Окислитель Удельная тяга (P1, с*) Температура сгорания °C Плотность топлива г/см³ Прирост скорости, ΔVид, 25, м/с Весовое содержание горючего %
Фтор 364,4 с °C 1,314 5197 м/с 31 %
Тетрафторгидразин 334,7 с °C 1,105 4346 м/с 23,5 %
ClF3 294,6 с °C 1,507 4509 м/с 27 %
ClF5 312,0 с °C 1,458 4697 м/с 26,93 %
Перхлорилфторид 295,3 с °C 1,327 4233 м/с 40 %
Фторид кислорода 345,9 с °C 1,263 4830 м/с 40 %
Кислород 312,9 с °C 1,065 3980 м/с 52 %
Пероксид водорода 286,9 с °C 1,261 4003 м/с 33 %
N2O4 291,1 с °C 1,217 3985 м/с 43 %
Азотная кислота 279,1 с °C 1,254 3883 м/с 40 %
  • Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²). В ракетно-космической сфере для обозначения чаще используют термин «удельный импульс тяги» (выражаемый в м/с) или просто «удельный импульс» (в секундах). Выраженная в м/с, эта величина характеризует скорость истечения реактивной струи (приблизительно, с учётом дополнительного слагаемого в формуле тяги ЖРД). Удельный импульс является важнейшей характеристикой совершенства ракетных двигателей. Зависит от типа применяемой топливной пары, схемы и конструкции двигателя и других параметров.

Токсичность

Гидразин и большинство его производных очень токсичны. Небольшие концентрации гидразина вызывают раздражение глаз, дыхательных путей. При повышении концентрации начинается головокружение, головная боль и тошнота. Далее следуют судороги, токсический отёк лёгких, а за ними — кома и смерть. ПДК в воздухе рабочей зоны = 0,1 мг/м3. Относится к первому классу опасности.