Ацетилацетон

Ацетилацетон

Ацетилацетон СН3-СО-СН2-СО-СН3 — органическое соединение, относящееся к классу кетонов с формулой C5H8O2. Этот дикетон имеет формальное название 2, 4-пентандион. Он является прекурсором для синтеза ацетилацетонатов, распространенный бидентантный лиганд. Также является билдинг блоком для синтеза гетероциклических соединений.

Ацетилацетон
Общие
Систематическое
наименование
2,4-​пентандион
Сокращения асас
Традиционные названия ацетилацетон
Хим. формула СН3СОСН2СОСН3
Рац. формула C5H8O2
Физические свойства
Состояние жидкость
Молярная масса 100,13 г/моль
Плотность 0,975 г/мл
Термические свойства
Температура
 • плавления -23 °C
 • кипения 140 °C
 • вспышки 34 °C
 • самовоспламенения 340 °C
Давление пара 9 гПа
Химические свойства
Константа диссоциации кислоты 9
Растворимость
 • в воде 16 г/100 мл
 • в орг. растворители смешивается
Оптические свойства
Показатель преломления 1,4609
Классификация
Рег. номер CAS 123-54-6
PubChem
Рег. номер EINECS 204-634-0
SMILES
InChI
ChEBI 14750
ChemSpider
Безопасность
NFPA 704

Свойства

Бесцветная жидкость с запахом ацетона и уксусной кислоты.

Кето и енольная форма ацетилацетона сосуществуют в растворе; эти формы являются таутомерами. C2v симметрия для енола показанного на левой части схемы была подтверждена разными методами, в том числе и микроволновой спектроскопией Водородная связь в еноле уменьшает стерическое отталкивание между карбонильными группами. В газовой фазе К, точнее её отрицательный логарифм pKa равен 11,7. Константа равновесия стремится к увеличению в неполярных растворителях: циклогексан — 42, толуол — 10, ТГФ 7.2, ДМСО (рK=2), и в воде (рK=0.23). Енольная форма является винилогом карбоновой кислоты.

Scheme 1. Tautomerism of 2,4-pentanedione

Получение

Ацетилацетон получается индустриально термической перегруппировкой изопропенил ацетата.

CH2C(CH3)OC(O)Me → MeC(O)CH2C(O)Me

Лабораторные пути к ацетилацетону начинаются на ацетоне. Ацетон и уксусный ангидрид при добавке BF3 в качестве катализатора:

(CH3CO)2O + CH3C(O)CH3 → CH3C(O)CH2C(O)CH3

Второй синтез включает катализируемая основаниями конденсация ацетона и этилацетата, с последующим подкислением.

NaOEt + EtO2CCH3 + CH3C(O)CH3 → NaCH3C(O)CHC(O)CH3 + 2 EtOH
NaCH3C(O)CHC(O)CH3 + HCl → CH3C(O)CH2C(O)CH3 + NaCl

Благодаря лёгкости этих синтезов известно много аналогов ацетилацетонатов. Некоторые примеры включают C6H5C(O)CH2C(O)C6H5 (dbaH) и (CH3)3CC(O)CH2C(O)CC(CH3)3. Гексафторацетилацетонаты (F3CC(O)CH2C(O)CF3) широко используются для получения летучих комплексов металлов.

Ацетилацетонат анион

Ацетилацетонат анион, C5H7O2, является сопряженным основанием 2,4-пентандиона. Он не существует свободно в виде аниона в растворе, напротив он связан с соответствующим катионом таким как Na+. На практике, существование свободного аниона, обычно сокращаемого acac, только удобная модель. Натрий ацетилацетонат может быть получен депротонированием ацетилацетона гидроксидом натрия в смеси вода-метанол.

Координационная химия

С ионами металлов ацетилацетон дает прочные комплексные соединения, которые используют в аналитической химии для определения и разделения бериллия, меди, хрома, железа и других металлов; в радиохимии — для выделения радиоактивных изотопов.

Ацетилацетонат анион образует комплексы с многими ионами переходных металлов, где оба атома кислорода связаны с металлом, образуя шестичленные хелатные комплексы. Некоторые примеры, включая Mn(acac)3,, VO(acac)2, Fe(acac)3, and Co(acac)3. Любой комплекс формулы M(acac)3 хиральный (имеет несовместимость со своим отражением в зеркале). Дополнительно комплексы M(acac)3 могут быть восстановлены; электрохимически глубина восстановления зависит от растворителя и металлического центра. Бис и трис комплексы типа M(acac)2 и M(acac)3 в основном растворимы в органических растворителях, в противоположность соответствующим галидам. Важное применение включает в себя использование их в 1Н ЯМР в качестве «смещающего реагента» и в качестве катализаторов в органическом синтезе, и прекурсоров к промышленным катализаторам гидроформилирования. C5H7O2 соединения в некоторых случаях происходит через центральный углеродный атом; этот тип связывания более характерен для third-row переходных металлов таких как платина(II) и иридий(III).

Ацетилацетонаты металлов

Хром(III) ацетилацетонат

Cr(acac)3 используется как спин релаксационный агент для увеличения чувствительности в количественной углерод-13 ЯМР спектроскопии.

Меди(II) ацетилацетонат

Cu(acac)2, получается обработкой ацетилацетона водным раствором Cu(NH3)42+ и доступен коммерчески, каталлизирует сочетание или реакции переноса карбена.

Scheme 1. Structure of copper(II) acetylacetonate

Медь(I) ацетилацетонат

В отличие от медь(II) производных, медь(I) ацетилацетонат чувствителен к воздуху. Он используется в качестве катализатора реакции Михаэля

Марганец(III) ацетилацетонат

Марганец(III) ацетилацетонат, Mn(acac)3, одноэлектронный окислитель, используется для сочетания фенолов. Его получают прямой реакцией ацетилацетона и калия перманганатом. В терминах электронной структуры, Mn(acac)3 высокоспиновый. Эта искаженная октаэдральная структра отражает геометрическое искривление благодаря эффекту Яна — Теллера. Две наиболее общие структуры для этого комплекса включает один с тетрэдральным увеличением и один с тетрэдральным сжатием. Для увеличения две Mn-O связи составляет 2.12 Å в то время как другие четверо 1.93 Å. Для сжатия, две Mn-O связи составляют 1.95 Å и четверо других 2.00 Å. Эффект тетраэдрального увеличения заметно более важен чем эффект тетраэдрального сжатия.

Scheme 1. Структура марганец(III) ацетилацетоната

Никель(II) ацетилацетонат

Никель(II) ацетилацетонат это не Ni(acac)2, а тример [Ni(acac)2]3. Он изумрудно-зелёного цвета твёрдое вещество, которое нерастворимо в бензоле. Широко используется для получения Ni(O)комплекса. Под действием воздуха [Ni(acac)2]3 переходит в зеленоватый мономерный гидрат.

Ванадил ацетилацетонат

Ванадил ацетилацетонат сине-зелёный комплекс с формулой V(O)(acac)2. Плохо растворим в воде. Хорошо растворим в органических растворителях. Водный раствор окрашивает в тёмно-зелёный цвет. Он полезен в эпоксидировании аллильных спиртов.

Цинк ацетоноацетат

Моногидро комплекс Zn(acac)2H2O (m.p. 138—140 °C) пентокоординатный, принимает форму квадратной пирамиды. Дегидратация этих веществ даёт гигроскопическое сухое производное (m.p. 127 °C). Это более летучее производное использовалось как прекурсор для плёнок ZnO

Иридий ацетоноацетат

Иридий(I) и иридий(III) образуют стабильные ацетилацетонатные комплексы. Ir(III) производные включая trans-Ir(acac)2(CH(COMe)2)(H2O) и более распространенный D3-symmetric Ir(acac)3. Производные с С-связью является прекурсором для гомогенных катализаторов для C-H активирования и соответствующих химий. Иридий(I) производные включают планарно-квадратный Ir(acac)(CO)2 (C2v-симметрия).

Алюминий(III) ацетилацетонат

Al(C5H7O2)n, или сокращённо Al(acac)3 Образует кристаллический желтоватый осадок при прямой реакции ацетилацетона с растворимой солью алюминия в щелочной среде при нагревании.

C-связанные ацетилацетонаты

C5H7O2 в некоторых случаях также связывает металл через центральный атом углерода (C3); этот способ связывания характерен для металлов третьего переходного ряда, таких как платина(II) и иридий(III). Комплекс Ir(acac)3 и соответствующий аддукт с основанием Льюиса Ir(acac)3L (L = an амин) содержат один углеродно-связанный acac лиганд. ИК-спектры О-связанных ацетилацетонатов характеризуется относительно малоэнергетическим νCO линиями при 1535 см−1, тогда как в углеродно-связанном ацетилацетонате наблюдается линия поглощения νC=O при 1655 см−1, характерная для кетонов.

Другие реакции ацетилацетона

  • Депротонирование: очень сильные основания могут дважды депротонировать ацетилацетон, начиная с С3, а также С1. Образующееся вещество может быть проалкилировано по атому C-1.
  • Прекурсор для синтеза гетероциклов: Ацетилацетон — многофункциональный прекурсор гетероциклов. Так, гидразин даёт при конденсации с ацетилацетонами замещенные пиразолы, а мочевина — пиримидины.
  • Прекурсор соответствующих имино-лигандов: ацетилацетон конденсируется с аминами, давая моно- и ди-кетимины, в которых один либо два атома кислорода ацетилацетона, соответственно, замещаются на группу NR (где R = арил, алкил).
  • Фермент ацетилацетона диоксигеназа разрывает связь углерод-углерод с образованием ацетата и 2-оксопропаналя. Фермент Fe(II) зависим, но было доказано соединение также с цинком. Деградация ацетилацетона была охарактеризивана в бактерии johnsonii.
C5H8O2 + O2 → C2H4O2 + C3H4O2
  • Арилирование: ацетилацетонат замещает галиды из обычной галогенозамещённой бензойной кислоты. Реакция катализируется медью.
2-BrC6H4CO2H + NaC5H7O2 → 2-(CH3CO)2HC)-C6H4CO2H + NaBr

Безопасность

КПВ 2.4-11.6 %