Простые эфиры

Простые эфиры

Простые эфиры — органические вещества, имеющие формулу R-O-R’, где R и R’ — алкильные, арильные или другие заместители. Простые эфиры являются летучими жидкостями с приятным запахом. Благодаря своей химической инертности и особым сольватационным свойствам они широко используются как растворители в промышленности и лаборатории.

Номенклатура

Рекомендации ИЮПАК позволяют при присвоении названий простым эфирам вида R-O-R’ использовать разные типы номенклатуры:

  • заместительную — когда группа R’-O- считается заместителем в родоначальном углеводороде RH;
  • радикало-функциональную — называя функцию словом «эфир» (название «оксид» не рекомендуется) и перечисляя названия радикалов R и R’ в виде приставок;
  • умножительную (если R и R’ циклические);
  • заменительную;
  • номенклатуру фанов.

Заместительная номенклатура является предпочтительной. В этом случае один из радикалов (R) выполняет роль родоначального углеводорода (RH) и получает название, соответствующее этому углеводороду. Группа R’O- считается заместителем, и её название образуется слиянием названия радикала R’ и приставки окси, например:

CH3CH2CH2CH2CH2O- — пентилокси-.

В нескольких случаях за заместителем R’O- сохранено традиционное название:

CH3O- — метокси-; CH3CH2O- — этокси-; CH3CH2CH2O- — пропокси-; CH3CH2CH2CH2O- — бутокси-; C6H5O- — фенокси-; (CH3)3CO- — трет-бутокси-; (CH3)2CHO- — изопропокси-.

В таком случае полные названия простых эфиров выглядят следующим образом:

CH3OCH3 — метоксиметан;
CH3CH2OCH3 — метоксиэтан;
PhOCH3 — метоксибензол (также: анизол).

В радикало-функциональной номенклатуре названия заместителей перед словом «эфир» перечисляются в алфавитном порядке:

CH3OCH3 — диметиловый эфир;
CH3CH2OCH3 — метилэтиловый эфир;
PhOCH3 — метилфениловый эфир.

Заменительную номенклатуру удобно использовать в случае полиэфиров. В этом случае соединение называется как углеводород, а место, где углеродный атом формально заменён кислородом, называют в виде приставки «окса»-:

CH3OCH2CH2OCH2CH2OCH2CH2OCH3 — 2,5,8,11-тетраоксадодекан;
(по заместительной номенклатуре: 1-метокси-2-[2-(2-метоксиэтокси)этокси]этан).

В редких случаях, когда оба заместителя в простом эфире являются циклическими, можно использовать умножительную номенклатуру:

PhOPh — 1,1′-оксидибензол.

Физические свойства и строение

Физические свойства

Эфиры — бесцветные, подвижные, легкокипящие жидкости с характерным запахом. Эфиры малорастворимы в воде, но хорошо растворяются в органических растворителях и сами растворяют органические соединения.

Строение молекул

Строение молекул простых эфиров схоже со строением молекулы воды. Валентный угол С–O–C в диметиловом эфире составляет 112°. Атом кислорода имеет sp3-гибридизацию.

Спектральные свойства

Характеристической полосой простых эфиров в инфракрасном спектре является полоса при 1150–1080 см–1, соответствующая колебаниям группы C–O–C.

В спектрах 1Н ЯМР группа CH3O алкиловых эфиров имеет сигнал при 3,3-4,0 м. д., а та же группа метилариловых эфиров — при 3,7 м. д. Сигналы протонов двойной связи в виниловых эфирах (вида СН=СН–О) находятся при 5,7-7,5 м. д. (α-положение) и 3,5-5,0 м. д. (β-положение). Если сравнивать эти значения с положением сигналов в аналогичной углеводородной системе СН=СН–С, то сигнал α-углеродного атома оказывается смещённым на +1,2 м. д., а сигнал β-углеродного атома — на –1 м. д.

В спектрах 13C ЯМР насыщенных простых эфиров атом углерода, находящийся в α-положении от атома кислорода, даёт сигнал в области 50-100 м. д., а более удалённые атомы углерода — в области 10-60 м. д. У виниловых эфиров углероды двойной связи (С=С–О) дают сигналы при 115-165 м. д. (α-положение) и 70-120 м. д. (β-положение). При этом, если сравнивать спектры с углеводородными системами типа С=С–С, то сигнал α-углеродного атома в виниловых эфирах оказывается смещённым на +15 м. д., а сигнал β-углеродного атома — на –30 м. д. У ароматических простых эфиров сигнал α-углеродного атома кольца наблюдается при 135-155 м. д. (смещение +25 м. д. по сравнению с ареном). Сигналы остальных ароматических атомов углерода при введении эфирной группы смещаются на –15 м. д. (орто-положение), +1 м. д. (мета-положение) и –8 м. д. (пара-положение).

В масс-спектрах алифатических простых эфиров молекулярный ион проявляется в виде слабого сигнала, для ароматических простых эфиров — в виде интенсивного сигнала. Основное направление фрагментации молекулярного иона — разрыв связи между α- и β-углеродными атомами и гетеролитический разрыв связи C–O. В результате возникают ионы с массой (m/z), равной 31, 45, 59… М–46, М–33, М–18.

Для алкилариловых простых эфиров фрагментация протекает через потерю алкильной цепи. У диариловых эфиров молекулярный ион или ион М–Н теряет группу CO, а также происходит разрыв связи между атомом кислорода и арильным заместителем. Также в ходе масс-спектрометрии простые эфиры претерпевают перегруппировки с отщеплением молекулы спирта либо — в случае ариловых простых эфиров — с отщеплением алкена и образованием фенола.

В промышленности таким способом получают простые эфиры из изобутилена либо изоамилена и метанола либо этанола, нагревая их над катионитом в кислой форме. При этом получают трет-бутилметиловый, трет-бутилэтиловый, трет-амилметиловый и трет-амилэтиловый эфиры.

В лабораторных условиях большее значение имеет реакция алкоксимеркурирования алкенов. Она аналогична реакции оксимеркурирования, при помощи которой алкены селективно превращают в спирты, однако в данном случае роль нуклеофильного реагента выполняет не вода, а спирт, который берут в качестве растворителя. Сам алкен вводят в реакцию с ацетатом ртути либо — для получения эфиров со вторичной или третичной алкильной группой — трифторацетатом ртути, а затем полученный продукт демеркурируют при помощи боргидрида натрия. Формально эта реакция представляет собой присоединения спирта по двойной связи согласно правилу Марковникова.

Реакция Вильямсона

Симметричные и несимметричные простые эфиры можно получить по реакции Вильямсона между алкоголятами и галогеналканами (либо сульфонатами). Эта реакция представляет собой нуклеофильное замещение по механизму SN2, и для неё верны соответствующие закономерности. Например, если в конечном продукте содержится вторичный или третичный заместитель, его следует вводить при помощи алкоголята, а не галогенида, поскольку в ином случае вместо замещения будет происходить реакция элиминирования. Наилучшими галогенидами в этой реакции являются первичные галогениды, а также аллил- и бензилгалогениды.

Химические свойства

Простые эфиры являются химически инертными веществами. Они устойчивы ко многим реагентам основной природы: не реагируют с гидридами, амидами щелочных металлов, комплексными гидридами, щелочными металлами. Также простые эфиры не гидролизуются щелочами.

Основные свойства

Химическая инертность простых эфиров позволяет применять их в качестве растворителей. В частности, они используются в реакциях восстановления алюмогидридом лития и магнийорганическом синтезе. Их сольватирующая способность объясняется тем, что они являются жёсткими основаниями Льюиса и образуют устойчивые комплексы с реактивами Гриньяра, литийорганическими соединениями, а также другими типичными кислотами Льюиса.

Также простые эфиры образуют комплексы с галогенами. Например, раствор иода в диэтиловом эфире имеет коричневую окраску, а не фиолетовую, как в алканах, что объясняется образованием комплекса и изменением спектра поглощения. С очень сильными алкилирующими реагентами простые эфиры образуют соли триалкилоксония.

Кислотное расщепление

Концентрированные бромоводородная и иодоводородная кислоты (48 %) при нагревании до 120-150 °С расщепляют простые эфиры с образованием спирта и галогеналкана. Легче всего расщепляются простые эфиры, имеющие третичную алкильную группу. Эту реакцию в 1861 году открыл А. М. Бутлеров.

Механизм кислотного расщепления основан на реакции SN1 или SN2, которая протекает в эфире, протонированном по атому кислорода. Если эфир содержит первичные или вторичные заместители, галогенид-ион атакует его протонированную форму по менее замещённому атому углерода. При одновременном присутствии первичной и вторичной алкильной группы галогенид селективно атакует первичную группу, в результате чего образуются первичный галогенид и вторичный спирт.

Простые эфиры с третичными заместителями реагируют по механизму SN1 в более мягких условиях. Их можно расщеплять трифторуксусной кислотой. Аналогичное действие на простые эфиры оказывают хлорид бора и бромид бора, но в их случае расщепление происходит уже при –20 °С, что может быть полезно в том случае, когда в жёстких условиях протекают побочные реакции.

Метил- и этилалкиловые эфиры расщепляют иодоводородной кислотой, чтобы количественно определить наличие метокси- и этоксигрупп по методу Цейзеля. Выделившиеся при такой обработке метилиодид и этилиодид пропускают через раствор нитрата серебра и определяют их количество по массе выпавшего иодида серебра либо окислением (по количеству образовавшегося иода).

Радикальное галогенирование

По аналогии с алканами, простые эфиры вступают в реакции радикального галогенирования, однако в случае эфиров эта реакция протекает региоселективно по положению, соседнему с атомом кислорода (по α-положению). Эта селективность связана с тем, что галогенирование протекает через образование особо устойчивого радикала, где 2p-орбиталь с неспаренным электроном перекрывается с 2p-орбиталью, на которой находится неподелённая электронная пара атома кислорода.

трет-Бутилметиловый и трет-амилметиловый эфиры более устойчивы к радикальному окислению и образуют меньше пероксидов. Предотвратить этот процесс можно при помощи ловушек радикалов, например фенолов и аминов. Часто в диэтиловый эфир добавляют ионол (1-30 мг/кг) либо другие стабилизаторы.

Применение

Простые эфиры используются как растворители для жиров, смол, красителей и лаков. Также они используются в качестве растворителей в органических реакциях. Некоторые эфиры применяют как анестетики, топливные присадки для повышения октанового числа и смазочные масла. Некоторые простые эфиры являются инсектицидами и фумигантами, поскольку их пары токсичны для насекомых.

Ариловые простые эфиры находят применение в качестве антиоксидантов и консервантов. Некоторые ароматические простые эфиры имеют приятный запах, благодаря чему их используют в парфюмерной промышленности.