Кетен

Кетен — H2C=C=O, бесцветный газ с резким запахом, Температура плавления = −150, 5 °C и температура кипения = −56, 1 °C. Простейший член гомологического ряда кетенов.

Кетен
Structural formula of ethenone.svg
Общие
Хим. формула C₂H₂O
Классификация
Номер CAS 463-51-4
PubChem 10038
ChemSpider 9643
Номер EINECS 207-336-9
RTECS OA7700000
ChEBI 48003
SMILES
C=C=O
InChI
1S/C2H2O/c1-2-3/h1H2
Приводятся данные для стандартных условий (25 ℃, 100 кПа), если не указано иное.

Строение и синтез

Первоначально основным лабораторным методом синтеза кетена являлся пиролиз ацетона в специальном аппарате — «кетеновой лампе» с выходами от 25-29 % в случае внешнего нагрева до 80-90 % в кетеновых лампах со внутренним электрическим нагревом. Этот метод также используется для синтеза некоторых гомологов кетена, например, метилкетена из метилэтилкетона.

Кетен также может быть синтезирован пиролизом уксусного ангидрида или уксусной кислоты:

Ketene preparation.png

Кетен также образуется при действии цинка на раствор бромацетилбромида в эфире:

BrCH2COBr + Zn CH2=C=O + ZnBr2

Отщепление галогеноводорода сильными основаниями от ацеталей галогенуксусных альдегидов является препаративным методом синтеза диалкилкеталей кетена:

BrCH2CH(OEt)2 CH2=C(OEt)2 + HBr

В настоящее время благодаря доступности промышленно синтезируемого дикетена кетен обычно получают его пиролизом.

Промышленный синтез и применение

Кетен является крупнотоннажным продуктом промышленного органического синтеза (мощности США и Западной Европы в 1995 г. — 550 тыс. тонн), большая часть используется для производства уксусного ангидрида ацилированием уксусной кислоты. В промышленности кетен получают пиролизом уксусной кислоты в присутствии триэтилфосфата или пиролизом ацетона над глинозёмом.

Кетен также используется в промышленном синтезе в реакциях [2+2]-циклоприсоединения к альдегидам.

Циклоприсоединение кетена к хлоралю с образованием соответствующего трихлорметил-β-лактона и последующим его гидролизом используется как метод синтеза яблочной кислоты, в модификации процесса, использующей в качестве хиральных индукторов на стадии [2+2]-циклоприсоединения хинина или хинидина позволяет провести реакцию стереоселективно с образованием (S)-(-)-яблочной кислоты, при этом достигает 96 %, оптическая чистота — 95 %.

Кетен также используется для производства капролактама (процесс Techni-Chem). На первой стадии этого процесса кетеном ацилируют циклогексанон с образованием циклогексенилацетата, который затем нитруют с отщеплением уксусной кислоты, получая 2-нитроциклогексанон. 2-Нитроциклогексанон затем подвергается гидролизу с образованием ε-нитрокапроновой кислоты, которую восстанавливают до ε-аминокапроновой кислоты; последнюю дегидратируют в капролактам при 300 °C и давлении 100 бар. Главным преимуществом Techni-Chem процесса является минимизация образования побочных продуктов, отщепляющаяся при нитровании циклогексенилацетата может быть пиролизована в кетен.

Реакционная способность и производные

Кетен, формально являющийся внутренним ангидридом уксусной кислоты, очень реакционноспособен и является сильным ацилирующим агентом, легко присоединяющимся к нуклеофильным молекулам с образованием ацетильных производных:

, где Х — Hal, OH, OR, OCOR, NH2, NHR, SH, SR и т. д.

Реакция идет через образование енольного аддукта, который затем таутомеризуется в ацетильное производное:

Ketene reaction mechanism.png

Кетен вступает в реакции [2+2]-циклоприсоединения, сам кетен димеризуется по этому механизму в дикетен при температуре выше −80 °C:

Димеризация кетена в дикетен.png

С алкенами кетен реагирует с образованием циклобутенонов.

Токсичность

Кетен — прозрачный газ с резким запахом, вызывающий раздражение глаз и дыхательных путей, чем напоминает фосген. При длительном воздействии возможен отёк лёгких.