- История
- Нахождение в природе
- Месторождения
- Получение
- Цены
- Физические свойства
- Изотопы
- Химические свойства
- Применение
- Ядерная энергетика
- Атомно-водородная энергетика
- Лазерные материалы
- Электроника
- Люминофоры
- Медицина
- Другие сферы применения
- Влияние на качество воды
- Пути поступления в организм
- Потенциальная опасность для здоровья
- Физиологическое значение
Европий — химический элемент с атомным номером 63 и атомной массой 151, 964(1) а. е. м., относящийся к группе лантаноидов, а также относящийся к группе редкоземельных элементов. Простое вещество европий, как и другие лантаноиды — мягкий серебристо-белый металл, легко окисляющийся на воздухе.
Европий | ||||
---|---|---|---|---|
← Самарий | Гадолиний → | ||||
|
||||
Внешний вид простого вещества | ||||
Мягкий серебристо-белый металл | ||||
Сублимированный Eu (~300 г; чистота 99,998%)
|
||||
Свойства атома | ||||
Название, символ, номер | Европий / Europium (Eu), 63 | |||
Атомная масса (молярная масса) |
151,964(1) а. е. м. (г/моль) | |||
Электронная конфигурация | [Xe] 4f7 6s2 | |||
Радиус атома | 199 пм | |||
Химические свойства | ||||
Ковалентный радиус | 185 пм | |||
Радиус иона | (+3e) 95 (+2e) 109 пм | |||
Электроотрицательность | 1,2 (шкала Полинга) | |||
Электродный потенциал | Eu←Eu3+ -1,99 В Eu←Eu2+ -2,80 В |
|||
Степени окисления | 3, 2 | |||
Энергия ионизации (первый электрон) |
546,9 (5,67) кДж/моль (эВ) | |||
Термодинамические свойства простого вещества | ||||
Плотность (при н. у.) | 5,243 г/см³ | |||
Температура плавления | 1099 К (826 °C) | |||
Температура кипения | 1802 K (1529 °C) | |||
Уд. теплота плавления | 9,21 кДж/моль | |||
Уд. теплота испарения | 176 кДж/моль | |||
Молярная теплоёмкость | 27,656 Дж/(K·моль) | |||
Молярный объём | 28,9 см³/моль | |||
Кристаллическая решётка простого вещества | ||||
Структура решётки | кубическая объёмноцентрированая |
|||
Параметры решётки | 4,581 Å | |||
Прочие характеристики | ||||
Теплопроводность | (300 K) 13,9 Вт/(м·К) | |||
Номер CAS | 7440-53-1 |
63 |
Европий
|
Eu
|
|
4f76s2 |
История
Первыми спектральные линии, отнесённые впоследствии к европию, наблюдали Крукс (1886) и Лекок де Буабодран (1892). Демарсе обнаружил полосу спектра элемента в самариевой земле в 1896 году, а в 1901 году смог выделить элемент, описал его и дал ему название в честь Европы.
Нахождение в природе
Месторождения
Европий входит в состав лантаноидов, которые часто встречаются в США, Казахстанe, России, Австралии, Бразилии, Индии, Скандинавии. Крупнейшее в мире месторождение европия находится в Кении. Значительны запасы в глубоководном месторождении редкоземельных минералов у тихоокеанского острова Минамитори в исключительной экономической зоне Японии.
Получение
Металлический европий получают восстановлением Eu2O3 в вакууме лантаном или углеродом, а также электролизом расплава EuCl3.
Цены
Европий является одним из самых дорогих лантаноидов. В 2014 году цена металлического европия ЕВМ-1 составляла от 800 до 2000 долларов США за кг, а оксида европия чистотой 99,9 % — около 500 долларов за кг.
Физические свойства
Европий в чистом виде представляет собой, как и другие лантаноиды, мягкий серебристо-белый металл. Он имеет необычно низкую плотность (5,243 г/см3), температуру плавления (826 °C) и температуру кипения (1440 °C) по сравнению со своими соседями по периодической системе элементов гадолинием и самарием. Эти величины противоречат явлению лантаноидного сжатия из-за влияния электронной конфигурации атома европия [Xe] 4f7 6s2 на его свойства. Так как электронная оболочка f атома европия заполнена наполовину, для образования металлической связи предоставлены только два электрона, притяжение которых к ядру ослаблено и приводит к существенному увеличению радиуса атома. Аналогичное явление наблюдается также у атома иттербия. При нормальных условиях европий имеет кубическую объёмно-центрированную кристаллическую решетку с постоянной решетки 4,581 Å. При кристаллизации под высоким давлением европий образует ещё две модификации кристаллической решетки. При этом последовательность модификаций при возрастании давления отличается от такой последовательности у других лантаноидов, что наблюдается также и у иттербия. Первый фазовый переход происходит при давлении свыше 12,5 ГПа, при этом европий образует гексагональную кристаллическую решетку с параметрами a = 2,41 Å и c = 5,45 Å. При давлении свыше 18 ГПа европий образует аналогичную гексагональную кристаллическую решетку с более плотной упаковкой. Ионы европия, встроенные в кристаллическую решетку некоторых соединений, способны вызывать интенсивную флуоресценцию, причем длина волны излучаемого света зависит от степени окисления ионов европия. Eu3+ практически независимо от того вещества, в кристаллическую решетку которого он встроен, испускает свет с длиной волны 613 и 618 нм, что соответствует интенсивному красному цвету. Напротив, максимальная эмиссия Eu2+ сильно зависит от строения кристаллической решетки вещества-хозяина и, например, в случае алюмината бария-магния длина волны испускаемого света составляет 447 нм и находится в синей части спектра, а в случае алюмината стронция (SrAl2O4:Eu2+) длина волны составляет 520 нм и находится в зелёной части спектра видимого света. При давлении 80 ГПа и температуре 1,8 К европий приобретает сверхпроводящие свойства.
Изотопы
Природный европий состоит из двух изотопов, 151Eu и 153Eu, в соотношении примерно 1:1. Европий-153 имеет природную распространённость 52,2 %, он стабилен. Изотоп европий-151 составляет 47,8 % природного европия. Недавно была обнаружена его слабая альфа-радиоактивность с периодом полураспада около 5×1018 лет, что соответствует примерно 1 распаду за 2 минуты в килограмме природного европия. Кроме этого природного радиоизотопа, созданы и исследованы 35 искусственных радиоизотопов европия, среди которых наиболее устойчивы 150Eu (период полураспада 36,9 года), 152Eu (13,516 года) и 154Eu (8,593 года). Обнаружены также 8 метастабильных возбуждённых состояний, среди которых наиболее стабилен 150mEu (12,8 часа), 152m1Eu (9,3116 часа) и 152m2Eu (96 минут).
Химические свойства
Европий является типичным активным металлом и вступает в реакции с большинством неметаллов. Европий в группе лантаноидов имеет максимальную реакционную способность. На воздухе быстро окисляется, на поверхности металла всегда есть оксидная плёнка. Хранят в банках или ампулах под слоем жидкого парафина или в керосине. При нагревании на воздухе до температуры 180 °C воспламеняется и горит с образованием оксида европия (III).
Очень активен, может вытеснять из растворов солей почти все металлы. В соединениях, как и большинство РЗЭ, проявляет преимущественно степень окисления +3, при определённых условиях (например, электрохимическим восстановлением, восстановлением амальгамой цинка и др.) можно получить степень окисления +2. Также при изменении окислительно-восстановительных условий возможно получение степени окисления +2 и +3, что соответствует оксиду с химической формулой Eu3O4. С водородом европий образует нестехиометрические фазы, в которых атомы водорода находятся в промежутках кристаллической решетки между атомами европия. Европий растворяется в аммиаке с образованием раствора синего цвета, что обусловлено, как и в подобных растворах щелочных металлов, образованием сольватированных электронов.
Применение
Ядерная энергетика
Европий используется в ядерной энергетике в качестве поглотителя нейтронов (в основном окись европия, гексаборид и борат европия) в атомных реакторах, но окись постепенно «выгорает», и по срокам эксплуатации уступает карбиду бора в 1,5 раза (хотя имеет преимущество в почти полном отсутствии газовыделения и распухания в мощном потоке нейтронов, например, реактор БН-600). Сечение захвата тепловых нейтронов европием (природной смесью изотопов) составляет около 4500 барн, самым активным в отношении захвата нейтронов является европий-151 (9200 барн).
Атомно-водородная энергетика
Оксид европия применяется при термохимическом разложении воды в атомно-водородной энергетике (европий-стронций-йодидный цикл).
Лазерные материалы
Ионы европия служат для генерации лазерного излучения в видимой области спектра с длиной волны 0,61 мкм (оранжевые лучи), поэтому оксид европия используется для создания твердотельных, и менее распространённых жидкостных лазеров.
Электроника
Европий является легирующей примесью в моносульфиде самария (термоэлектрогенераторы), а также как легирующий компонент для синтеза алмазоподобного (сверхтвердого) нитрида углерода.
Силицид европия в виде тонких плёнок находит применение в интегральной микроэлектронике.
Моноокись европия, а также сплав моноокиси европия и моноокиси самария применяются в виде тонких плёнок в качестве магнитных полупроводниковых материалов для функциональной электроники и, в частности, МДП-электроники.
Люминофоры
- Европий — непременная составляющая люминофоров, используемых в электронно-лучевых и плазменных цветных экранах.
- Купюры евро защищены от подделок люминофорами на основе европия.
- Вольфрамат европия — люминофор, используемый в микроэлектронике.
- Легированный европием борат стронция используется как люминофор в лампах чёрного света.
Медицина
Катионы европия используются в медицинской диагностике в качестве флуоресцентных зондов. Радиоактивные изотопы европия применяются при лечении некоторых форм рака.
Другие сферы применения
- Интенсивно изучаются светочувствительные соединения европия с бромом, хлором и иодом.
- Европий-154 обладает большой мощностью тепловыделения при радиоактивном распаде и предложен в качестве источника в радиоизотопных источниках энергии.
Влияние на качество воды
В реакциях с водой европий химически ведёт себя как кальций. При уровнях рН ниже 6 европий способен мигрировать в воде в ионном виде. При более высоких уровнях рН европий образует плохо растворимые и, соответственно, менее подвижные гидроксиды. При контакте с кислородом воздуха происходит дальнейшее окисление до Eu2O3. Максимально наблюдаемые концентрации европия в природных маломинерализованных водах составляют менее 1 мкг/л (в морской воде — 1,1⋅10−6 мг/л). Влияние на качество воды при таких концентрациях представляется незначительным. Предельно допустимая концентрация (ПДК) в воде нормируется только российскими нормами и равна (для питьевой воды) 0,3 мг/л.
Пути поступления в организм
Вероятность попадания европия в организм человека представляется незначительной. Возможно поступление европия в организм с водой в микроскопических количествах. Нельзя исключать вероятности и других путей попадания в организм у людей, сталкивающихся с соединениями европия на производстве.
Потенциальная опасность для здоровья
Европий относится к малотоксичным элементам. Нет какой-либо информации о последствиях воздействия европия на организм человека.
Физиологическое значение
На данный момент нет данных о какой-либо биологической роли европия в организме человека.